Lamina-specific contribution of glutamatergic and GABAergic potentials to hippocampal sharp wave-ripple complexes

نویسندگان

  • Jan Schönberger
  • Andreas Draguhn
  • Martin Both
چکیده

The mammalian hippocampus expresses highly organized patterns of neuronal activity which form a neuronal correlate of spatial memories. These memory-encoding neuronal ensembles form on top of different network oscillations which entrain neurons in a state- and experience-dependent manner. The mechanisms underlying activation, timing and selection of participating neurons are incompletely understood. Here we studied the synaptic mechanisms underlying one prominent network pattern called sharp wave-ripple complexes (SPW-R) which are involved in memory consolidation during sleep. We recorded SPW-R with extracellular electrodes along the different layers of area CA1 in mouse hippocampal slices. Contribution of glutamatergic excitation and GABAergic inhibition, respectively, was probed by local application of receptor antagonists into s. radiatum, pyramidale and oriens. Laminar profiles of field potentials show that GABAergic potentials contribute substantially to sharp waves and superimposed ripple oscillations in s. pyramidale. Inhibitory inputs to s. pyramidale and s. oriens are crucial for action potential timing by ripple oscillations, as revealed by multiunit-recordings in the pyramidal cell layer. Glutamatergic afferents, on the other hand, contribute to sharp waves in s. radiatum where they also evoke a fast oscillation at ~200 Hz. Surprisingly, field ripples in s. radiatum are slightly slower than ripples in s. pyramidale, resulting in a systematic shift between dendritic and somatic oscillations. This complex interplay between dendritic excitation and perisomatic inhibition may be responsible for the precise timing of discharge probability during the time course of SPW-R. Together, our data illustrate a complementary role of spatially confined excitatory and inhibitory transmission during highly ordered network patterns in the hippocampus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced sharp wave-ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices.

The characteristic, behaviour-related network oscillations of the mammalian hippocampus (, gamma and ripples) are accompanied by strongly phase-coupled action potentials in specific subsets of GABAergic interneurones. It has been suggested that the resulting phasic, repetitive inhibition shapes rhythmic coherent activity of the neuronal network. Here, we examined whether synaptic inhibition ent...

متن کامل

Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning

Oscillations in hippocampal local-field potentials (LFPs) reflect the crucial involvement of the hippocampus in memory trace formation: theta (4-8 Hz) oscillations and ripples (~200 Hz) occurring during sharp waves are thought to mediate encoding and consolidation, respectively. During sharp wave-ripple complexes (SPW-Rs), hippocampal cell firing closely follows the pattern that took place duri...

متن کامل

Cannabinoid receptor activation disrupts the internal structure of hippocampal sharp wave-ripple complexes.

Cannabinoid agonists impair hippocampus-dependent learning and memory. Using mouse hippocampal slice preparations, we examined the effect of anandamide, an endogenous cannabinoid, on sharp wave-ripple (SW-R) complexes, which are believed to mediate memory consolidation during slow-wave sleep or behavioral immobility. Anandamide reduced the frequency of SW-Rs recorded from the CA3 region, and th...

متن کامل

Field potential signature of distinct multicellular activity patterns in the mouse hippocampus.

Cognitive functions go along with complex patterns of distributed activity in neuronal networks, thereby forming assemblies of selected neurons. To support memory processes, such assemblies have to be stabilized and reactivated in a highly reproducible way. The rodent hippocampus provides a well studied model system for network mechanisms underlying spatial memory formation. Assemblies of place...

متن کامل

High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat.

Population bursts of the CA3 network, which occur during eating, drinking, awake immobility, and slow-wave sleep, produce a large field excitatory postsynaptic potential throughout stratum radiatum of the CA1 field (sharp wave). The CA3 burst sets into motion a short-lived, dynamic interaction between CA1 pyramidal cells and interneurons, the product of which is a 200 Hz oscillatory field poten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014